Skip to main content

Iowa State scientist developing materials, electronics that dissolve when triggered


A medical device, once its job is done, could harmlessly melt away inside a person's body. Or, a military device could collect and send its data and then dissolve away, leaving no trace of an intelligence mission. Or, an environmental sensor could collect climate information, then wash away in the rain. It's a new way of looking at electronics: "You don't expect your cell phone to dissolve someday, right?" said Reza Montazami, an Iowa State University assistant professor of mechanical engineering. "The resistors, capacitors and electronics, you don't expect everything to dissolve in such a manner that there's no trace of it."
But Montazami thinks it can happen and is developing the necessary materials.
He calls the technology "transient materials" or "transient electronics." The materials are special polymers designed to quickly and completely melt away when a trigger is activated. It's a fairly new field of study and Montazami says he's making progress.
The research team he's leading, for example, is developing degradable polymer composite materials that are suitable platforms for electronic components. The team has also built and tested a degradable antenna capable of data transmission.
The team presented some of its research results at the recent meeting of the American Chemical Society in Dallas.
And, a paper describing some of the team's work, "Study of Physically Transient Insulating Materials as a Potential Platform for Transient Electronics and Bioelectronics," has just been published online by the journal Advanced Functional Materials.
The paper focuses on the precise control of the degradation rate of polymer composite materials developed for transient electronics.
Montazami is the lead senior author of the paper. Iowa State co-authors are Nastaran Hashemi, an assistant professor of mechanical engineering; Handan Acar and Simge Cinar, postdoctoral research associates in mechanical engineering; and Mahendra Thunga, a postdoctoral research associate in materials science and engineering and an associate of the U.S. Department of Energy's Ames Laboratory. Michael Kessler, formerly of Iowa State and now professor and director of Washington State University's School of Mechanical and Materials Engineering in Pullman, is also a co-author.
The research has been supported by Montazami's startup funds from Iowa State. He's pursuing grants to support additional projects.
"Investigation of electronic devices based on transient materials (transient electronics) is a new and rarely addressed technology with paramount potentials in both medical and military applications," the researchers wrote in the paper.
To demonstrate that potential, Montazami played a video showing a blue light-emitting diode mounted on a clear polymer composite base with the electrical leads embedded inside. Add a drop of water and the base and wiring begin to melt away. Before long the light goes out and a second drop of water degrades what little is left.
The researchers have developed and tested transient resistors and capacitors. They're working on transient LED and transistor technology, said Montazami, who started the research as a way to connect his background in solid-state physics and materials science with applied work in mechanical engineering.
As the technology develops, Montazami sees more and more potential for the commercial application of transient materials.
Just think, he said, if you lose your credit card, you could send out a signal that causes the card to self-destruct. Or, sensors programmed to degrade over certain times and temperatures could be stored with food. When the sensors degrade and stop sending a signal, that food is no longer fresh. Or, when soldiers are wounded, their electronic devices could be remotely triggered to melt away, securing sensitive military information.

Comments

Popular posts from this blog

ESP32-C6 Wi-Fi Logger with Browser GPS + Heat Map Dashboard

This project is an ESP-IDF firmware for the Seeed Studio XIAO ESP32-C6 that turns the board into a self-hosted, secure Wi-Fi scanning logger. It creates its own access point, serves a responsive HTTPS web UI, logs nearby Wi-Fi access points, optionally tags rows with GPS coordinates (provided by the client browser), and exposes battery status from the on-board LiPo input. The end result is a pocket Wi-Fi “survey” tool: scan, track, export logs as CSV, and generate a heat map view to visualize RSSI vs location. Project overview and feature set: :contentReference[oaicite:1]{index=1} What it does AP + Station mode so the device can serve the dashboard while scanning nearby Wi-Fi networks. HTTPS web interface using a bundled certificate/key for local secure access. Single scan and continuous tracking modes. CSV export for analysis and archiving. Persistent logging to SPIFFS at /spiffs/logs.csv . Battery monitoring via ADC with voltage/percentage/status sh...

learn how to sniff wireless passwords with pirni

The thing about the iPod Touch and the iPhone is that they are great portable hacking devices. To the naked eye the iPod Touch/iPhone looks like nothing more than an ordinary mp3 player/cellphone however that is just an understatement to its full potential. Once your Ipod Touch/iPhone is jailbroken you have access to your whole file system meaning that applications generally associated with laptop/desktop hacking can be ported and used on the iPod Touch/iPhone. This opens up a whole lot of possibilities for network sniffing, port scanning and much much more! In this tutorial we are going to take a look at one of these programs called Pirni. What is Pirni? Pirni is an application that was ported to The Ipod Touch/iPhone to be used as a native network sniffer. Pirni is so useful because it gets past the iPod Touch’s/iPhone’s wifi hardware limitation of not being able to be set into promiscious mode (a mode that allows a network device to intercept and read each network packet that arrive...

how to run a GUI application throw SSH using X11

soo all we need is first to install the ssh server on the server - machine we like to control so - 1. sudo su 2. apt-get install openssh-server . . now back to our machine using the ssh : 1. ssh -V -X username@the-server-ip 2. enter the password and that is it now we can run any GUI application that install on the server using his CPU cycles yahhhh great !! for example lets run WireShark : 3. gksudo wireshark & now all that if we runing tow Linux machines !! but what windows users that like to run a linux app??! !! soo we need it tow applications 1. putty you can get it here : http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html 2.Xming you can get it here : http://sourceforge.net/projects/xming/ ok so first we need to install Xming , and after that we going to use butty but we need to cheak Enable X11 forwarding in connection -- > SSH -- > X11 >> Enable x11 forwarding . and that is it free to run any linux application on windows using SSH . have fun ...